Non-Alcoholic Fatty Laver Disease

(NAFLD)

Hailemichael Desalegn, MD, PhD Cand. Asst. Protessor of Int. Medicine onsultant – Internist, Gastroenterologist/Hepatologis Status Hospital MMC

• Criteria

- Magnitude
- Pathogenesis
- Diagnosis
- Management

Outline FINDING THE TRUE CROSS

• Evidence for therapeutic options

NAFLD Definition

- Evidence of hepatic steatosis (fatty liver) either by imaging or histology
- No other causes of secondary hepatic fat accumulation
- No significant alcohol consumption (<21 drinks/week for men,
 <14 drinks/week for women)

Epidemiology

- Most common liver disorder in world
- 10-24 % incidence in general population
- Mostly in 4th -6th decade of life
- F>M
- 75 % of type 2 diabetics have some form of NAFLD
- NASH 5 % biopsy

NAFLD – low risk factors

Reference, Year	Country	Population (n)	NAFLD Diagnosis	Prevalence of NAFLD (%)	Prevalence of NASH/ Fibrosis (%)	Criteria	Alcohol/Viral Hepatitis Excluded
General population, imaging stud	lies						
Zhou et al, 2007 ²⁹	China	General population (N=3543)	US	15.0	NA	NA	Yes
Fan et al, 2007 ³⁰	China	Employees (N= 14646)	US	14.0	NA	NA	Yes
Lin et al, 2005 ³¹	China	Employees (N= 1581)	US	28.9	NA	NA	Only alcohol
Fan et al, 2005 ³²	China	General population (N=3175)	US	15.3	NA	NA	Yes
Shen et al, 2003 ³³	China	Administrative officers (N=4009)	US	12.9	NA	NA	Yes
Zelber-Sagi et al, 2006 ³⁴	Israel	General population (N=326)	US	30.0	NA	NA	Yes
Kagansky et al, 2004 ³⁵	Israel	Non-liver related hospitalization, elderly (N= 134)	US	46.0	NA	NA	Yes
Bedogni et al, 2005 ³⁶	Italy	General population (N=598)	US	20.0	NA	NA	Yes
Hamaguchi et al, 2005 ³⁷	Japan	General population (N=4401)	US	18.0	NA	NA	Yes
Jimba et al, 2005 ³⁸	Japan	General population (N=1950)	US	29.0	NA	NA	Yes
Omagari et al, 2002 ³⁹	Japan	General population (N=3432)	US	13.4	NA	NA	Yes
Kim et al, 2004 ⁴⁰	Korea	General population (N=768)	US	23.4	NA	NA	Yes
Lizardi-Cervera et al, 200641	Mexico	General population (N=2503)	US	17.1	NA	NA	Yes
Chen et al, 2006 ⁴²	Taiwan	General population (N=3245)	US	11.5	NA	NA	Yes
Park et al, 2006 ⁴³	Korea	General population (N=6648)	US	18.7	NA	NA	Yes
Lin et al, 2005 ⁴⁴	Taiwan	Healthy workers, men (N=2025)	US	29.5	NA	NA	No
Church et al, 2007 ⁴⁵	United States	Healthy men (N=218)	CT	19.7	NA	NA	Yes
Browning et al, 2004 ⁴⁶	United States	General population (N=2287)	MRS	31.0	NA	NA	Only alcohol
General population, liver enzyme	s						
Pendino et al, 200547	Italy	General population (N=1050)	AST or ALT or GGT	4.7	NA	NA	Yes
Suzuki et al, 2005 ⁴⁸	Japan	General population (N=1537)	AST or ALT	9.3	NA	NA	Yes
Clark et al, 2003 ⁴⁹	United States	Representative of the U.S. general population	AST or ALT	5.4	NA	NA	Yes
Ruhl et al, 2003 ⁵⁰	United States	Non-diabetes general population (N = 5724)	ALT	2.8	NA	NA	Yes
General population, histopatholog	gic studies						
Amarapurkar et al, 2007 ⁵¹	India	Deaths, general population (N = 1230)	Autopsy	15.8	30% Fibrosis	NA	No
Yamamoto et al, 2007 ⁵²	Japan	Living liver donors (N=263)	Biopsy	17.9	1.1% NASH	Brunt et al ⁵³	NA
Halon et al, 2006 ⁵⁴	Poland	Dead liver donors (N=70)	Biopsy	30.0	14% NASH	NA	No
Tran et al, 2006 ⁵⁵	United States	Living liver donors (N=70)	Biopsy	38.5	18.5% NASH	Brunt et al ⁵³	Only hepatitis

NASH, nonalcoholic steatohepatitis; US, ultrasound; NA, not applicable; CT, computed tomography; MRS, magnetic resonance spectroscopy; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, gamma-glutamyltransferase.

NAFLD – Risk factors

					Prevalence of		Alcohol/Viral
Reference, Year	Country	Population (n)	NAFLD Diagnosis	Prevalence of NAFLD (%)	NASH/Fibrosis/ Cirrhosis (%)	Criteria	Hepatitis Excluded
High risk population, imaging studie	es						
Targher et al, 2007 ⁶¹	Italy	Type 2 diabetes patients (N=2839)	US	69.5	NA	NA	Yes
Angelico et al, 2005 ⁶²	Italy	Metabolic clinic consultation (N=308)	US	95.0	NA	NA	Yes
Gupte et al, 2004 ⁶³	India	Type 2 diabetes patients (N=100)	US	49.0	NA	NA	Yes
Roesch-Dietlen et al, 200664	Mexico	Metabolic syndrome (N= 337)	US	15.7	NA	NA	Yes
Gambarin-Gelwan et al, 200765	United States	Policystic ovary syndrome (N=88)	US	54.5	NA	NA	NA
Weston et al, 2005 ⁶⁶	United States	Chronic Liver Disease Registry (N=742)	US/CT	39.1	NA	NA	Yes
High risk population, liver enzymes	ł.						
Liangpunsakul et al, 2005 ⁶⁷	United States	Metabolic syndrome (N= 4376)	ALT	7.0	NA	NA	Yes
High risk population, biopsy studies	l.						
Lima et al, 2005 ⁶⁸	Brasil	Bariatric surgery patients (N=112)	Biopsy	99.1	55.7 NASH/21.6 fibrosis	Modified from Brunt ⁵³	Yes
de Oliveira et al, 2007 ⁶⁹	Brasil	Bariatric surgery patients (N=146)	Biopsy	76.0	41.1 NASH	Other	Yes
Boza et al, 2005 ⁷⁰	Chile	Bariatric surgery patients (N=127)	Biopsy	63.0	26.0 NASH/1.6 cirrhosis	Modified from Brunt ⁵³	Yes
Harnois et al, 2006 ⁷¹	France	Bariatric surgery patients (N=92)	Biopsy	98.0	9.8 NASH	Other	Yes
Wolf et al, 2005 ⁷²	Germany	Bariatric surgery patients (N=179)	Biopsy	33.0	7.3 Fibrosis	Other	Yes
Gupte et al, 2004 ⁶³	India	Type 2 diabetes + US positive (N=32)	Biopsy	12.5	NA	NA	Yes
Papadia et al, 200473	Italy	Bariatric surgery patients (N=1000)	Biopsy	26.0*	8.0 Fibrosis	Other	Only alcohol
							and HCV
Sorrentino et al, 2004 ⁷⁴	Italy	Bariatric surgery patients + metabolic syndrome (N=80)	Biopsy	72.0	72.5 NASH/32.5 fibrosis	Brunt et al ⁵³	Yes
Chavarria et al, 200575	Mexico	Bariatric surgery patients (N=35)	Biopsy	82.9	NA	Brunt et al ⁵³	Yes
Liew et al, 2006 ⁷⁶	Taiwan	Bariatric surgery patients (N=160)	Biopsy	33.8	33.8 NASH	NASH-CRN77	Yes
Gholam et al, 200778	United States	Bariatric surgery patients (N=100)	Biopsy	86.0	36.0 NASH/25.0 fibrosis	NASH-CRN77	NA
Solga et al, 2005 ⁷⁹	United States	Bariatric surgery patients (N=189)	Biopsy	88.0	45.0 NASH	Brunt et al ⁵³	NA
Kunde et al, 2005 ⁸⁰	United States	Bariatric surgery patients (N=233)	Biopsy	97.0	32.6 NASH/31.3 fibrosis	NASH-CRN77	Yes
Abrams et al, 2004 ⁸¹	United States	Bariatric surgery patients (N=195)	Biopsy	99.0	36.4 NASH/33.3 fibrosis	Brunt et al ⁵³	Yes
Beymer et al, 2003 ⁸²	United States	Bariatric surgery patients (N=48)	Biopsy	65.0	33.0 NASH/12.0 fibrosis	Ishak	Only alcohol
Spaulding et al, 2003 ⁸³	United States	Bariatric surgery patients (N=48)	Biopsy	90.0	49.0 Fibrosis/2.0 cirrhosis	Others	NA
Ong et al, 2005 ⁸⁴	United States	Bariatric surgery patients (N=212)	Biopsy	93.0	26.0 NASH/9.0 fibrosis	Other	NA
Albano et al, 2005 ⁸⁵	UK	Liver unit referral (N=167)	Biopsy	47.3	44.0 NASH/8.0 cirrhosis	Modified from Brunt ⁵³	Yes

*70% or more hepatic steatosis.

NASH, nonalcoholic steatohepatitis; US, ultrasound; CT, computed tomography; NA, not applicable; ALT, alanine aminotransferase; HCV, hepatitis C virus; NASH-CRN, nonalcoholic steatohepatitis Clinical Research Network.

AFRICAN STUDIES

Nigeria - 20% and comparable to the prevalence of NAFLD in Asian countries.

Nigeria Type 2 DM :- NAFLD was identified in 16.7% (28 of 168) patients with T2DM compared with 1.2% (2 of 168) non-diabetic controls (Odds Ratio 16.6; p < 0.001)

Sudan - The overall prevalence of fatty liver among individuals with type 2 DM 50.3%.

Egypt - Fatty liver was prevalent in schoolchildren (15.8%)

Arab J Gastroenterol. 2014 Jun;15(2):76-81 Pan Afr Med J. 2016 May 6;24:20. Arab J Gastroenterol. 2014 Mar;15(1):12-5.

Ethiopian studies – risk factors

- Obesity :- 6.6 % (Females) and 1.5 % male
- Jimma overweight/obesity was 26.8 %.
- School children, Diredawa 14.7 and 5.8 %
 Alemnesh, 2016
- Type 2 DM 3.1% (1980) to 7.1% (2014) in WHO African report
- There were over 1.33 million cases of diabetes in Ethiopia in 2015.

World data Atlas, 2014

Hailemichael et. al., 2010

IDF, 2015

Risk Factors for NAFLD

Major Co-morbidities

- Type 2 Diabetes
- Dyslipidemia
- Obesity
- Metabolic Syndrome

Other Associations

- Sleep Apnea
- Polycystic Ovary Syndrome
- Hypothyroidism
- Hypopituitarism

Metabolic Syndrome (≥ 3 of following: NCEP/ATP III criteria)

- i. Impaired fasting glucose and DM
- ii. Central obesity: (waist circumference > 35 inches in women and 40 inches in men)
- iii. Elevated Triglyceride (\geq 150 mg/dl)
- iv. Low HDL Cholesterol (< 50 mg/dL in females and 40 mg/dL in males)
- v. HTN

Lonardo A, et al. J Hepatol 2006;44:1196 McCullough A et al. J Clin Gastroenterol 2002;34:255

Spectrum of Non-Alcoholic Fatty Liver Disease (NAFLD)

NAFL (Fat/Steatosis only)

Steatohepatitis (NASH) (Steatosis, inflammation, ballooning

degeneration, +/- fibrosis)

NAFLD Spectrum

(systemic and hepatic desensitization of insulin signaling pathways)

Inflammation

(cytokine dysbalance, oxidative stress, hepatocyte (lipo-)apoptosis)

Prolonged injury and fibrogenesis

(activation of hepatic stellate cells, emergence of fibrogenic progenitors)

Enhanced epithelial proliferation/turnover

(inactivation of tumor suppressor genes, loss of cell cycle control, epithelial growth stimation by hyperinsulinemia

Spectrum of Non-Alcoholic Fatty Liver Disease (NAFLD)

NAFL

- Hepatocyte Injury (Ballooning¹, Mallory Bodies², Dead cells)
- Inflammatory Cell (Infiltration³)

Gut Microbiome on Obesity, IR, NAFLD Progression

Intestinal microbiota

<u>First Hit</u>

- Endotoxemia
- Insulin Resistance
- \uparrow calorie extraction
- Hyperlipidemia
- Altered choline metabolism

Second Hit

- Bacterial Translocation
- Elevated levels of PAMPs in portal V

Healthy Liver

Steatosis

TLR4 & TLR9 activation

Steatohepatitis Inflammation Fibrosis/Cirrhosis

Adapted from: Henao-Meja J et al. Journal of Autoimmunity 2013

Henao-Meja J et al. Nature 2012;482:179-185 Frasinariu OE et al. Digestive and Liver Disease 2013;45:543-551

NAFLD Diagnosis

- Evidence of hepatic steatosis (fatty liver) either by imaging or histology
- No other causes of secondary hepatic fat accumulation
- No significant alcohol consumption (<21 drinks/week for men,
 <14 drinks/week for women)
- Elevated liver enzymes (*predominantly ALT and AST, Alkaline Phosphatase in a small percent of cases*) – can be normal in about 10%
- Imaging: US, CT, MRI
 - Cannot distinguish NAFL vs. NASH, degree of fibrosis

Ultrasound

Normal Liver

Fatty Liver

Ultrasound

Pros

Quick test

Inexpensive

No radiation

Painless

Cons

Sensitivity: 93% when steatosis is >33%, but poor when steatosis <30%

Changes of hepatic steatosis on ultrasound (increased brightness, vascular blurring) can also be seen in fibrosis or early cirrhosis

Limited by body habitus

Liver biopsy

Assessing Histological Severity NAFLD

- Liver Biopsy: remains the gold standard
 NAFL (Steatosis) vs. NASH
- Non-Invasive Methods of assessing severity
 - Presence of Metabolic Syndrome
 - Serum Markers (clinical//biochemical) and Imaging Modalities
 - Serum Biomarkers (NAFL vs. NASH): CK-18

 \rightarrow Blood cytokeratin-18 fragment (CK-18) reflects the degree of apoptosis, a characteristic feature of NASH

 \rightarrow Limited sensitivity for NASH, fibrosis

- Fibrosis Markers/Liver Fibrosis Panel: ELF, Fibrometer, FIB-4, Hepascore, Fibrotest
- NAFLD Fibrosis Score (<u>http://maildscore.com</u>): age, BMI, hyperglycemia, platelet count, albumin, AST/ALT ratio
- Elastography (liver stiffness): US/MR

NAFLD fibrosis score Online calculator

Angulo P, Hui JM, Marchesini G et al. **The NAFLD fibrosis score** A noninvasive system that identifies liver fibrosis in patients with NAFLD Hepatology 2007;45(4):846-854 <u>doi:10.1002/hep.21496</u>

Age (years)	
BMI (kg/m²)	
IGF/diabetes	
AST	
ALT	
Platelets (×10°/l)	
Albumin (g/l)	
	calculate score

BMI: body mass index IGF: impaired <u>fasting glucose</u> **Assessing Histological Severity NAFLD**

NAFLD Fibrosis Score (http://nafldscore.com): age, BMI, hyperglycemia, platelet count, albumin, AST/ALT ratio

 $-1.675 + 0.037 \times age (years) + 0.094 \times BMI (kg/m2) + 1.13 \times IFG/diabetes (yes = 1, no = 0) + 0.99 \times AST/ALT ratio - 0.013 \times platelet (\times 109/l) - 0.66 \times albumin (g/dl)$

NAFLD Score < -1.455 =F0-F2 (none-mild fibrosis)NAFLD Score -1.455 - 0.675 =Indeterminate scoreNAFLD Score > 0.675 =F3-F4 (bridging/cirrhosis)

NAFLD Fibrosis Score – An Independent Predictor of Mortality

> Angulo P, et al. Hepatology. 2007 Apr;45(4):846-54 Younossi Z et al. AASLD 2013 Abstract #634

Imaging Tests Measuring Stiffness: Elastography Fibroscan

Point SWE ("ARFI quantification") (Siemens, Phillips)

Image courtesy of Elhamy Heba

MR Elastography (G.E.)

Courtesy of Loomba R

Fibroscan: US Elastography

- Non-invasive way to measure liver stiffness, which correlates with fibrosis
- Measures shear wave velocity by passing a 50-MHz wave into the liver and then a transducer measures the velocity of the shear wave
- Shear wave velocity then gets converted into liver stiffness and is expressed as kilopascals

Fibroscan: US Elastography

NAFLD: a new and important cardiovascular risk

- Elevated levels of plasma biomarkers of inflammation
 - + Endothelial dysfunction
 - + Early carotid changes
 - + Early myocardial dysfunction

• There is a graded relationship between the histological severity of NAFLD and atherosclerosis.

• Increased CVD risk seen even after adjustment for traditional risk factors and components of the metabolic syndrome.

NAFLD: Not just a biomarker but an early mediator of atherosclerosis

factor

Bhatia LS et al. European Heart J 2012;33:1190 Targher G et al. Diabetologia 2008, 51:1947

AASLD/ACG/AGA - Work up NAFLD

- Look for metabolic risk factors and alternate etiologies in pts with steatosis
- NASH cirrhosis screen for varices, HCC screening
- Uncertainities screening not recommended
- Exclude competing etiologies
- NAFLD fibrosis score predict likelihood of bridging fibrosis/cirrhosis
- Liver biopsy exclude coexisting CLD, high autoantibodies, persistently high ferritin

Management of NAFLD: NAFL/NASH

- Improving underlying risk factors
 - Correct metabolic syndrome
 - Life-style changes (Dietary modification, Weight loss, Physical exercise)
 - Surgical [Bariatric] therapy
- Ameliorating insulin resistance, intra-hepatic lipids and oxidative stress
 - Life-style changes (Dietary modification, Weight loss, Physical exercise)
 - Medical Therapy (Drugs)
 - Surgical [Bariatric] therapy

Dietary Modification

- Total calorie restriction: most important goal for improving steatosis
 Leads to weight loss
- Macronutrient modification: provides additional benefit
 - Low carbohydrate diet vs. Low Fat diet
 - Both similar to lower liver fat and serum ALT
 - Both similar to induce wt. loss, improve insulin sensitivity (IS), TGL
 - Low carbohydrate diet
 - Better in improving IS in pts. with glucose intolerance
 - Significantly reduces waist circumference, more consistent changes in LDL-C and HDL-C
 - Low fat diet: less saturated fat, more Polyunsaturated Fat (PUFA)

Musso G et al. Diabetologia 2012; 55:885 McCarthy EM, Rinella M. JADA 2012;112:401 Finelli C, Tarantino G. J Gastrointestin Liver Dis 2012; 21:293 Hypercaloric Diets With Increased Meal Frequency, but Not Meal Size, Increase Intrahepatic Triglycerides: A Randomized Controlled Trial

HF = High Fat High Sugar; HS= High Sugar S = Size F = Frequency

Koopman KE et al. Hepatology 2014;60:545-553

Weight Loss

- ~ 10% loss in body weight may lead to histological improvement (target for weight loss)
 - Improves IS, fasting glucose, glucose tolerance, plasma lipids
 - $\geq 5\%$ weight loss improves hepatic steatosis
 - − ≥7% weight loss also improves NAS (NASH Activity Score)
 - >10% weight loss also predicts 'fibrosis regression'
- Less than 50% achieve goal despite multi-disciplinary approach
- Avoid rapid and dramatic weight loss and weight cycling

Musso G et al. Diabetologia 2012;55:885 Huang MA, Conjeevaram H. Am J Gastroenterol 2005;100:1072 Promnat K et al. Hepatology 2010;51:121 Glass LM et al. AASLD 2012 Abstract #378

Weight Loss for NASH

- Design: Prospective cohort study of 293 patients with biopsy-proven NASH followed over 12 months
- "Intervention":
 - Given recommendations to consume a low-fat diet of 750 kcal/day less than their estimated daily energy needs (64% carbs, 22% fat, 14% protein)
 - Encouraged to walk 200 minutes/week
 - Liver biopsies obtained pre-and post study
- Primary Outcome: Resolution of NASH with no worsening of fibrosis

Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis Vilar-Gomez, Eduardo et al. Gastroenterology, 2015, Volume 149, Issue 2, 367 - 378.e5

Weight Loss Results

Variables	Overall $(n = 293)$	WL <5 (n = 205)	WL = 5-6.99 (n = 34)	WL = 7 - 9.99 (n = 25)	WL ≥10 (n = 29)	P value
Weight loss, %	3.8 ± 2.7	1.78 ± 0.16	5.86 ± 0.09	8.16 ± 0.22	13.04 ± 6.6	_
Resolution of steatohepatitis"	72 (25)	21 (10)	9 (26)	16 (64)	26 (90)	<.01
NAS improvement ^b	138 (47)	66 (32)	21 (62)	22 (88)	29 (100)	<.001
Change in NAS from baseline	-1.58 ± 0.27	-0.89 ± 0.13	-1.94 ± 0.36	-3.84 ± 0.29	-4.10 ± 0.23	<.001
Steatosis improvement ^c	142 (48)	72 (35)	22 (65)	19 (76)	29 (100)	<.001
Change from baseline	-0.63 ± 0.10	-0.36 ± 0.07	-1 ± 0.13	-1.40 ± 0.19	-1.69 ± 0.12	<.001
Lobular inflammation	147 (50)	72 (35)	24 (71)	22 (88)	29 (100)	<.001
Change from baseline	-0.49 ± 0.15	-0.29 ± 0.05	-0.53 ± 0.22	-1.32 ± 0.09	-1.21 ± 0.11	<.001
Ballooning improvement ^c	115 (39)	54 (26)	14 (41)	21 (84)	26 (90)	<.001
Change from baseline	-0.45 ± 0.17	-0.24 ± 0.04	-0.41 ± 0.13	-1.12 ± 0.13	-1.34 ± 0.08	<.001
Fibrosis status		i solore te distant			DOUGHARD TO MANA STA	<.01
Regression	56 (19)	33 (16)	6 (18)	4 (16)	13 (45)	
Stabilized	191 (65)	129 (63)	25 (74)	21 (84)	16 (55)	
Worsened	46 (16)	43 (21)	3 (8)	0 (0)	0 (0)	
Change from baseline	-0.01 ± 0.02	0.09 ± 0.07	-0.02 ± 0.03	-0.17 ± 0.12	-0.86 ± 0.20	<.001**
Portal inflammation improvement ^c	44 (15)	27 (13)	3 (9)	5 (20)	9 (31)	.049
Change from baseline	0.02 ± 0.02	0.06 ± 0.01	0.09 ± 0.03	-0.07 ± 0.01	-0.31 ± 0.08	<.01**
NAS status						<.001
NAS <2	119 (41)	48 (23)	20 (59)	22 (88)	29 (100)	
NAS 3-4	79 (27)	74 (36)	2 (6)	3 (12)	0 (0)	
NAS ≥5	95 (32)	83 (41)	12 (35)	0 (0)	0 (0)	

Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis Vilar-Gomez, Eduardo et al. Gastroenterology, 2015, Volume 149, Issue 2, 367 - 378.e5

Weight Loss Results

- At least a 5% weight loss increases the odds of resolution of NASH.
- The more weight lost, the greater the odds of resolution of NASH.
- Weight loss of ≥10% resulted in:
 - Resolution of NASH in 90% of patients
 - Regression of fibrosis in 45% of patients
 - Reduction in NAS to ≤ 2 in 100% of patients

Exercise

- Aerobic exercise with or without weight training improves insulin resistance (IR)
 - Moderate exercise (expending 400 kcals/session) 3 x per week is sufficient to improve IR
- Overall energy expenditure achieved per workout is very important
- More recently, exercise intensity has also been shown to improve liver histology in NASH

Rector RS, et al. Am J Physiol Gastrointest Liver Physiol 2008;294:G619 Mikus CR, et al. J Appl Physiol 2010;109:1203 Laye MJ, et al. J Physiol 2009;587:3729 Vieira VJ, et al. Am J Physiol Endocrinol Metab 2009;296:E1164 Bradley RL, et al. Am J Physiol Endocrinol Metab 2008;295:E586 Robol R, et al. PNAS USA 2011;108:13705

Potential Medical Therapeutics for NASH

igodol

•

•

- Ursodiol
- <u>Antioxidants</u>

Vitamin E SAM-E Betaine

- <u>Insulin Sensitizers</u>
 Metformin
 TZDs (PPAR©agonists)
- <u>Anti-lipemics</u>

Clofibrate Gemfibrozil Atorvastatin Fenofibrate (PPAR⟨ agonist)

- Losartan
- Anti-Fibrotics

Galectin-3, Simtuzumab

• TNFa inhibitors

Pentoxifylline

- Omega-3 Fatty Acids
- Capsase Inhibitor
 GS-9450
 - GLP-1 receptor agonist Liraglutide, Exenatide
- FXR agonist
 Obeticholic acid (OCA)
 - Orlistat (Xenical)
 - CAM: Sylimarin
- Growth Hormone
- **Rimonabant** (CB1 receptor antagonist)

A Randomized controlled trial of Pioglitazone or Vitamin E for Nonalcoholic Steatohepatitis (PIVENS)

- A placebo-controlled trial with 3 arms (Rx for 96 weeks):
 - Pioglitazone 30 mg/d (n, 80)
 - Natural Vitamin E [rrr (-Tocopherol] 800 IU/d (n, 84)
 - Placebo (n, 83)
- <u>Inclusion criteria</u>: NAFLD Activity Score (NAS) ≥ 4 within 6 months prior to randomization
 - NAS = steatosis (0-3) + ballooning (-02) + lobular inflammation (0-3)
- <u>Exclusion criteria</u>:
 - Presence of diabetes
 - Presence of cirrhosis
 - History of bariatric surgery

Sanyal A, et al. N Engl J Med 2010;362:1675-85

A Randomized Controlled Trial of Pioglitazone or Vitamin E for Nonalcoholic Steatohepatitis (PIVENS)

- Primary end-point: Decrease in NAS by ≥ 2 points (at least 1 point decrease in ballooning) and no increase in fibrosis
 - A p-value of < 0.025 considered significant when comparing groups

• <u>Secondary end-points</u>:

- Individual features of NASH
- No NASH after treatment
- Improvement of Insulin Resistance
- Quality of Life

Effects of Pioglitazone, Vitamin E and Placebo on ALT, AST, IR, Body Weight

Sanyal A, et al. N Engl J Med 2010;362:1675-85

Results

• Primary end-point (Histological):

- Placebo
- Vitamin E
- Pioglitazone

43% (p= 0.001 vs. Placebo)*

34% (p= 0.04 vs. Placebo)

• <u>Compared to Placebo</u>:

	Vitamin E	Pioglitazone
Improved steatosis	yes	yes
Improved inflammation	yes	yes
Improved ballooning	yes	yes
Improved fibrosis	no	no
Improved serum ALT	yes	yes

19%

Potential Problems/Risks with TZDs and Vitamin E

• TZDs:

- Weight gain
- Congestive heart failure
- Increased heart attacks with rosiglitazone
- Bone loss
- Discontinuation of therapy leads to worsening of histology

• Vitamin E:

 Increased in total mortality, heart failure, and hemorrhagic stroke in certain high risk patients[#]

AASLD Practice Guidelines 2012

- (i) Vitamin E (a-tocopherol) administered at daily dose of 800 IU/day improves liver histology in <u>non-diabetic adults with</u> <u>biopsy-proven NASH</u> and therefore it <u>should be considered as a</u> <u>first-line pharmacotherapy</u> for this patient population.
- (ii) Until further data supporting its effectiveness become available, vitamin E is not recommended to treat NASH in diabetic patients, NAFLD without liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis.

AASLD Practice Guidelines 2012

- (i) <u>Metformin</u> has no significant effect on liver histology and is <u>not</u> <u>recommended</u> as a specific treatment for liver disease in adults with NASH.
- (ii) <u>Pioglitazone can be used</u> to treat steatohepatitis in patients with <u>biopsy-proven NASH</u>.

However, it should be noted that majority of the patients who participated in clinical trials that investigated pioglitazone for NASH were non-diabetic and that long term safety and efficacy of pioglitazone in patients with NASH is not established.

Newer Potential Therapies in the Horizon

Liraglutide

- A Glucagon-like peptide-1 analogue licensed for use in Type 2 DM.
- Increases insulin secretion and insulin sensitivity.
- Up to 26 weeks of liraglutide (dose = 1.8 mg) has been shown to be safe, well tolerated and improve liver enzymes in patients with type 2 diabetes.
 - Effect appears to be mediated by its action on weight loss and glycemic control.

A Pilot Study of Liraglutide in NAFLD/NASH Patients with glucose intolerance

- Patient Inclusion Criteria: After lifestyle modification intervention for 24 weeks, subjects whose hemoglobin A1c levels failed to improve to less than 6.0% and/or whose ALT levels were not lower than baseline.
 19/26 patients met the criteria
- Liraglutide dose: 0.9 mg/body per day for 24 weeks.
- 10 patients continued therapy for 96 weeks repeated liver biopsy performed in these patients.
- <u>Results</u>:
 - 6 patients had decreased inflammation as determined by NASH activity score (NAS) and stage of fibrosis; 3 had no change and one patient had worsening of both findings.
 - No significant adverse events during therapy with liraglutide.

Eguchi Y et al. Hepatology Res 2014

Obeticholic acid (OCA)

- OCA: 6a-ethyl-chenodeoxycholic acid is a semisynthetic derivative of the primary human bile acid chenodeoxycholic acid, the natural agonist of the farnesoid X receptor, which is a nuclear hormone receptor that regulates glucose and lipid metabolism.
- First-in-class agonist of the farnesoid X receptor (FXR).
- In animal models, OCA has been shown to decrease insulin resistance and hepatic steatosis.

Adorini L et al. Drug Discovery Today 2012;17:988-997

Obeticholic acid (OCA) For Treatment of NASH: FLINT TRIAL

- A multi-center, double-blind, placebo-controlled clinical trial to assess safety and efficacy of obeticholic acid (OCA) 25 mg daily in adult patients (n= 283) with biopsy proven NASH x 72 weeks.
- An Interim Analysis demonstrated that OCA treatment resulted in a significant improvement in primary histological endpoint (defined as a decrease in the NAFLD Activity Score (NAS) of ≥ 2 points with no worsening of fibrosis, as compared to placebo: 45 vs. 21 % (*p*=0.0024 on an intention-to-treat [ITT] basis).

Increased pruritus (23% vs. 6%) and increased LDL

• Study stopped prematurely by the Data Safety Monitoring Board (DSMB) as the pre-defined threshold of statistical significance for stopping FLINT was p < 0.0031.

Probiotics Treatment in Liver Diseases: Evidence for Role of Gut Microbiota in NAFLD

Kirpich IA, McClain CJ. J Am Coll Nutr 2012;31:14-23

Probiotics in Treatment of NAFLD

Animal Studies:

- Reduced liver oxidative stress and insulin resistance
- Reduced hepatic total fatty acid content
- Decreased aminotransferase levels
- Improved hepatic steatosis and inflammation; amelioration of fibrosis

Human Studies:

- Improved plasma levels of lipid peroxidation $(VSL#3)^{1}$
- Decreased serum levels of aminotransferases ^{2,3}
- Increased liver fat (VSL#3)⁴

Kelishadi R et al. Hepat Mon 2013;13:e7233 ¹Loguercio C et al. J Clin Gastroenterol 2005;39:540-3 ²Loguercio C et al. Am J Gastroenterol 2002;97:2144-6 ³Aller R et al.Eur Rev Med Pharmacol Sci 2011;15:1090-5 4Ejtahed HS et al. J Dairy Sci 2011;94:3288-94

Bariatric Surgery in the Severely Obese

- Improves insulin resistance, glucose and lipid levels
- Improves liver enzymes and liver histology (steatosis, inflammation and fibrosis) with controlled weight loss
- Should not be done in decompensated cirrhotics or those with portal hypertension (CT showing collaterals or even small esophageal varices)
- Experienced surgeon, careful consent, and avoidance of long-limb bypass
- Identifying factors associated with favorable outcomes and the independent roles of wt. loss and other metabolic changes after bariatric surgery on improvements in obesity-associated diseases is important

Kral JG et al. Surgery 2004; 135: 48 Mattar SG et al. Annals of Surgery 2005; 242: 610 Clark JM, et al. Obesity Res 2005;13:1180 Barker KB, et al. Am J Gastroenterol 2006;101:368 deAlmeida SR, et al. Obesity Surgery 2006;16;270 Liu X, et al. Obesity Surgery 2007;17:486 Furuya CK, et al. J Gastroenterol Hepatol 2007;22:510 Rabl C and Campos GM. Semin Liver Dis 2012;32:80–91

SUMMARY

- ? Next epidemic
- No clear definitive diagnosis
- U/S lacks sensitivity with degree of steatosis
- Non-invasive fibrosis assessment
- No pharmacological therapy is approved for NAFLD or NASH.
- Emphasise the importance of lifestyle changes, weight loss and exercise as the mainstay of treatment.
- Orlistat can be safely used as an adjunct to weigh loss and may provide additional benefit.
- Treat other components of the metabolic syndrome, including hypertension, dyslipidemia and insulin resistance or diabetes

- Statins can be safely used to treat hypercholesterolaemia in patients with NAFLD or NASH.
- For patients with biopsy-proven NASH, currently available medications with proven benefit, although for off-label use, include
- Oliraglutide, pioglitazone, vitamin E and pentoxifylline

Summary of Management

- Treatment should be targeted against liver pathology as well as co-morbidities
 - In patients with simple steatosis (NAFL): focus should be on comorbidities
 - In patients with NASH: focus on treating liver pathology and comorbidities

