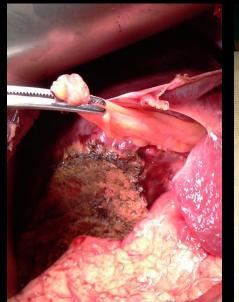


8th LIVER INTEREST GROUP Annual Meeting Cape Town 2017

Liver resection for HCC

Jose Ramos


University of the Witwatersrand Donald Gordon Medical Centre

The liver is almost unique in that treatment of the underlying malignancy is determined not only by the stage of the malignancy but also the state of the organ itself

Treatment options in HCC are largely determined by the state of the liver

Staging Systems in HCC

Stagin Systen		Alpha- fetoprotein	Performance Score	Tumor Staging
Okuda	Ascites, albumin, and bilirubin	No	No	Tumor > or < 50% of cross- sectional area of liver
TNM	No	No No N		Number of nodules, tumor size, presence of portal vein thrombosis, and presence of metastasis
CLIP	СТР	< 400 or ≥ 400 ng/mL	No	Number of nodules, tumor > or < 50% area of liver, and portal vein thrombosis
BCLC	СТР	No	Yes	Tumor size, number of nodules, and portal vein thrombosis
CUPI	Bilirubin, ascites, alkaline phosphatase	< 500 or ≥ 500 ng/mL	Presence of symptoms	TNM
JIS	СТР	No	No	TNM
GRETO	CH Bilirubin, alkaline, phosphatase	< 35 or ≥ 35 µg/L	Yes	Portal vein thrombosis

HCC and state of liver

 Cirrhosis present in 80% - 85% of patients with HCC

```
[1] Sherman M. Semin Liver Dis 2005;25:143—54.
```

3] Borie F et al J Surg Oncol 2008;98:505—9.

Absence of cirrhosis does not mean the liver

is healthy

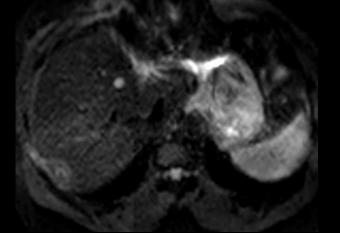
Fatty liver

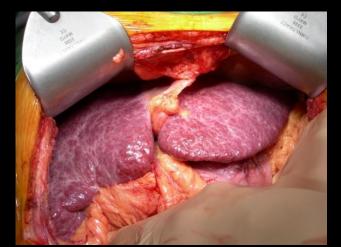
Fibrosis

Not reported	8 (10)
Steatosis, n (%)	
Yes	42 (51)
No	40 (49)
Siderosis, n (%)	
Yes	24 (29)
No	30 (37)
Not reported	28 (34)

Fibrosis, n (%)	
0	23 (28)
1	24 (29)
2	26 (32)
3	9 (11)
Inflammation, n (%)	
0	7 (9)
1	47 (57)
2	18 (22)
3	2 (2)

Normal / healthy liver in 12% - 15%




^[2] Altekruse SF et al. J Clin Oncol 2009;27:1485—91.

Determinants of outcome in HCC

- Progression of HCC
- New HCC
- Progression of cirrhosis

Survival of unresected HCC according to BCLC classification (Italy)

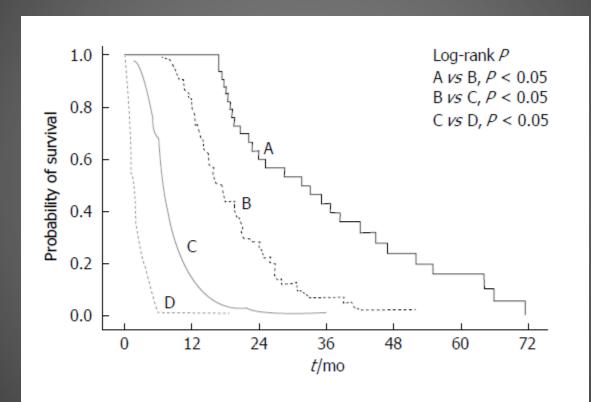


Figure 1 Kaplan-Meier analysis of 320 untreated hepatocellular carcinoma patients. Survival according to Barcelona Clinic Liver Cancer classification.

World J Hepatol 2012 September 27; 4(9): 256-261

Curative options in HCC

- Surgical resection
 - Can only address the malignancy
 - Limited by the state of the liver, extent of malignancy
 - Failure due to recurrence of HCC or liver failure
- Transplantation
 - Can address both the diseased liver as well as the malignancy
 - Failure due to recurrence of HCC
 - May not be available to many HCC patients

Both options only applicable to a limited number of patients

Liver Transplantation for HCC: Milan Criteria (Stage 1 and 2)

Single tumor not > 5 cm Up to 3 tumors none > 3 cm

Table 1							
Liver Transplantation Criteria							
Milan's Criteria[7]	UCSF Criteria[8]	Silva et al[9]					
Single tumor ≤ 5 cm	Single tumor ≤ 6.5 cm						
Or up to 3 tumors ≤ 3 cm	Or up to 3 tumors \leq 4.5 cm, and total sum is \leq 8 cm	Up to 3 tumors \leq 5 cm, and total sum is \leq 10 cm					
All Three Criteria Lists							
No vascular invasion							
No regional nodal/distant metastasis							
UCSF = University of California	of San Fransisco.						

- 5-yr survival with transplantation: ~ 70%
- 5-yr recurrent rates: < 15%

Liver resection for HCC

How much liver can be safely resected?

• No cirrhosis 60% – 70%

• Childs A 40% - 50%

• Childs B 20% - 30%

• Childs C Not resectable

Surgery not an option for majority of patients presenting with HCC

Extent of cirrhosis in screening program

Table 2. Epidemiologic and Clinical Features of the 112 Patients at the Time of Diagnosis of Hepatocellular Carcinoma							
	Patient features	Number					
	Males	88 (79%)					
	Mean age, yr (range)	61 (42-79)					
	More than 53 years of age	95 (85%)					
	Child–Pugh class						
	A	78 (69%)					
	В	30 (27%)					
	С	4 (3%)					
	AFP, ng/mL						
	≤ 20	43 (38%)					
	21-400	42 (38%)					
	>400	27 (24%)					
	Single tumor node						
	at US	60 (54%)					
	after staging	46 (41%)					
	CLIP score						
	0	29 (26%)					
	1	45 (40%)					
	2	27 (24%)					
	3	9 (8%)					
	4	2 (2%)					

Table 5. Epidemiologic and Clinical Features of Cancer Patients Identified During the 3 Quinquennia of Surveillance

	Surveillance period			
Patient features	1987–1991	1992–1996	1997–2001	P value
Child-Pugh class				
Α	29 (56%) ^a	30 (81%) ^b	19 (83%) ^c	a vs. b 0.014; a vs. c 0.036
В	19 (36%)	7 (19%)	4 (17%)	
С	4 (8%)	0	0	

Extent of cirrhosis in HCC patients at presentation

Middle-East

Hepat Mon. 2013;13(5):e7612

CPT ^a Class, No. (%)				
Α	101 (29.5)			
В	152 (44.4)			
С	89 (26.0)			

Europe

Child-pugh classes				
A	105 (33)			
В	142 (44)			
С	73 (23)			

Unresectable

World J Hepatol 2012 September 27; 4(9): 256-261

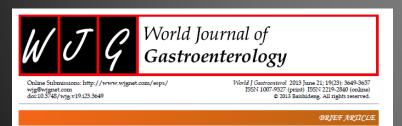
Child-pugh classes	
A	105 (33)
В	142 (44)
С	73 (23)

Extent of cirrhosis in HCC patients undergoing surgery

Paris (Surg vs Tx)

Annals of Surgery • Volume 256, Number 6, December 2012

Child Pugh Class)
A	80 (87.9%)	19 (18.8%)
В	10 (11%)	45 (44.6%)
C	1 (1.1%)	37 (36.6%)


New York (Surg vs TACE)

Ann Surg Oncol (2013) 20:2881-2886

Long-term survival after resection HCC

- 8450 patients resected
- 1516 5-year survivors
- 520 10-year survivors

Hepatocellular carcinoma: Clinical study of long-term survival and choice of treatment modalities

Ke-Tong Wu, Cun-Chuan Wang, Li-Gong Lu, Wei-Dong Zhang, Fu-Jun Zhang, Feng Shi, Chuan-Xing Li

World J Gastroenterol 2013 June 21; 19(23): 3649-3657

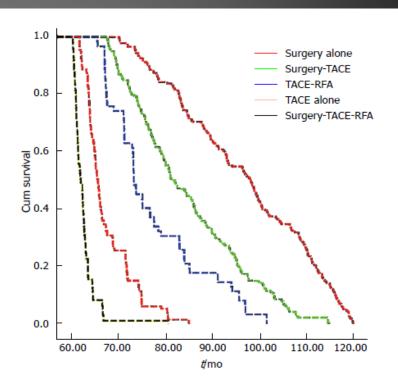


Figure 1 Kaplan-Meier curve shows overall survival rates of different treatment modalities in hepatocellular carcinoma patients who survived between 5 years and 10 years. Different treatment models showed statistically significant differences in the survival period: surgery alone > surgery-transcatheter arterial chemoembolization (TACE) > TACE-radiofrequency ablation (RFA) > TACE alone > surgery-TACE-RFA.

Surgical Resection

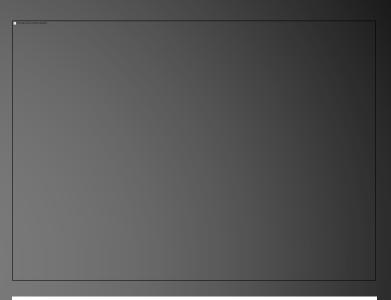
TABLE 2. Results of resection for hepatocellular carcinoma

		Operative		Survival	
Author	N	mortality (%)	1 year	3 years	5 years
Okuda, 1985 ⁷	153	30	30	15	12
Japan Liver Survey, 1994*39	468	_	76	55	45
	3500	_	76	52	36
Bismuth, 1993, 199540,41	68	3	74	52	40
	60	10	80	52	_
Fong, 1999 ⁴²	54	3.7	83	58	42
	100	5	77	47	37
Grazi, 2001 ⁴³					
Before 1992	107	9.3	_	53	32
After 1992	157	1.3	_	72	49
Poon, 2002 ⁴⁴					
Milan Criteria	135	4	90	76	70
Esnaola, 200345					
USA	169	5.3			31
France	187	6.4			31
Japan	230	3.5			41
Cha, 200346					
Milan Criteria	36	2.8	85	74	69
Ouside Milan	144	5	70	44	31
Wu, 2005 ⁴⁷	105	1	86	70	55
Nuzzo, 2007 ⁴⁸	113	3			44
					24 (10 years)
Katz, 2009 ⁴⁹	192	4.6	75	56	41
					23 (10 years)
Nathan, 2009 SEER ⁵⁰	788				39

^{*}Multi-institutional series.

Resection vs Transplantation

TABLE 3. Recent Studies Comparing Long-Term Outcome of Patients with HCC Treated Primarily With Resection (and salvage transplantation) or Primary Liver Transplantation


First Author	Year	Primary Therapy	Sample Size	5-year OS Rate	5-year DFS Rate	Study Period	ITT Analysis
Lee ⁸⁵	2010	Transplantation	78	68%	75%*	1997–2007	Yes
		Resection	130	52%	50%		
Facciuto ^{84#}	2009	Transplantation	119	62%	_	1997-2007	Yes
		Resection	60	61%	_		
Del Gaudio ⁸³	2008	Transplantation	147	58%	54%	1996-2005	Yes
		Resection	80	66%	41%		
Shah ⁸²	2007	Transplantation	140	64%	78%*	1995-2005	Yes
		Resection	121	56%	60%		
Poon ⁸¹	2007	Transplantation	85	44%	_	1995-2004	Yes
		Resection	228	60%	_		
Margarit ⁸⁰	2005	Transplantation	36	50%	64%*	1988-2002	Yes
		Resection	37	78%	39%		
Bigourdan ⁷⁹	2003	Transplantation	17	71%	80%*	1991-1999	Yes
		Resection	20	36%	40%*		
Adam ⁷⁹	2003	Transplantation	195	61%*	58%*	1984-2000	Yes
		Resection	98	50%	18%		
Belghiti ⁷⁷	2003	Transplantation	70	_	59%	1991-2001	No
		Resection	18	_	61%		
Figueras ⁷⁸	2000	Transplantation	85	60%	60%*	1990-1999	Yes
		Resection	35	51%	31%		

^{*}Significant difference as reported in the original study; #4-year survival rates are reported for patient meeting the Milan criteria. DFS indicates disease-free survival; ITT, Intention-to-treat analysis; OS, overall survival.

Resection of large HCC in non-cirrhotic liver

- Includes fibrolamellar HCC
- Hep B&C negative
- Younger patients
- Usually confined to liver
- Diagnosis often only confirmed after resection
- Worthwhile candidates for resection

Verhoef C et al Dig Surg 2004;21:380-386 Lang H et al Br J Surg 2005;192:198-202

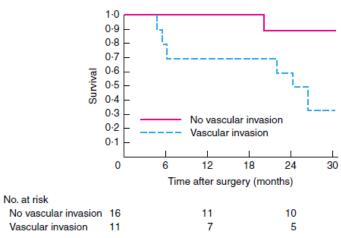


Fig. 1 Survival after R0 resection of hepatocellular carcinoma in 27 patients with a non-cirrhotic, non-fibrotic liver and no underlying viral hepatitis, stratified according to the presence of vascular invasion. P = 0.024 (log rank test)

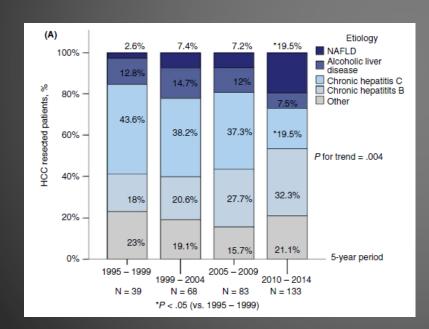
Survival after resection in non-cirrhotic HCC

Table 1 prognostic factors	for hepatocellula	r cancer in non-cir	hotic liver.	
1 ^{er} author (references)	Number of patients	Dates of study	Overall 5 Year survival (%)	Factors of poor prognosis
Bege et al. [15]	116	1987—2005	40.0	R1 resection Vascular involvement HBV infection
Dupont-Bierre et al. [16]	84	1998—2003	44.4	Multiple tumors Gross vascular involvement
Lang et al. [17]	83	1998–2005	30.0	UICC stage Vascular involvement Tumor grade
Laurent et al. [18]	108	1987—2005	29.0	Blood transfusion Absence of capsule Satellite nodules Resection margin < 1cm
Capussotti et al. [19]	47	1985—2002	30.9	Size > 10 cm Satellite nodules

HBV: hepatitis B virus; UICC: Union Internationale Contre le Cancer

rdon

Received: 18 April 2017 | First decision: 9 May 2017 | Accepted: 21 July 2017


DOI: 10.1111/apt.14261

WILEY AP&T Alimentary Pharmacology & Therapeutics

Temporal trends, clinical patterns and outcomes of NAFLD-related HCC in patients undergoing liver resection over a 20-year period

R. Pais^{1,2} | L. Fartoux¹ | C. Goumard³ | O. Scatton³ | D. Wendum⁴ |

O. Rosmorduc¹ | V. Ratziu^{1,2}

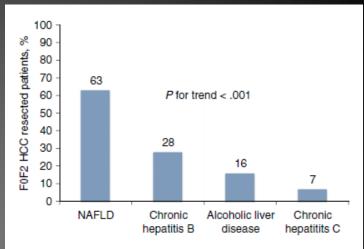


FIGURE 2 Proportion of HCC cases occurring in the absence of bridging fibrosis/cirrhosis according to the aetiology of chronic liver disease

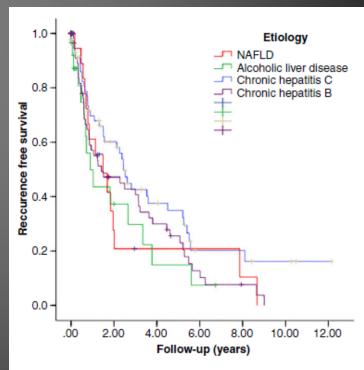
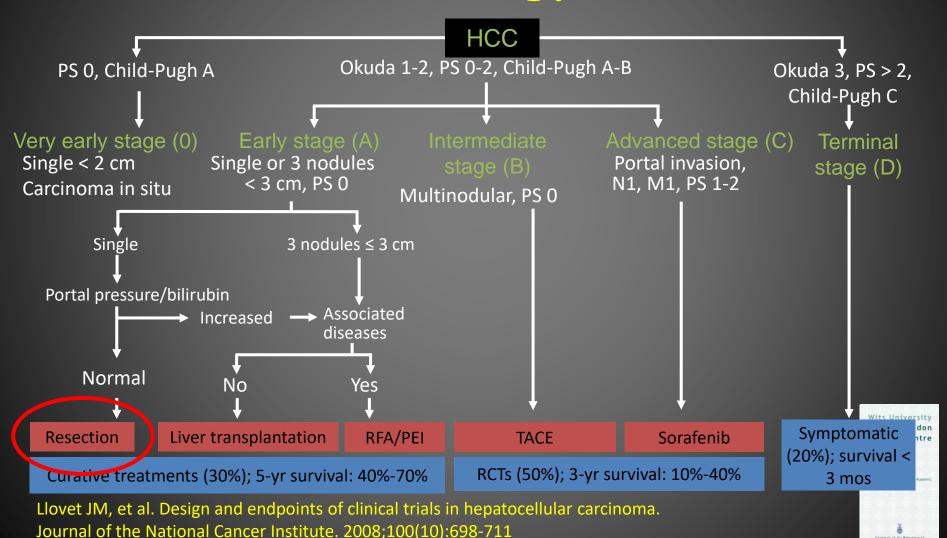



FIGURE 3 HCC-recurrence-free survival curves according to the aetiology of chronic liver disease

BCLC Staging and Treatment Strategy

Surgical resection only appropriate in CTP A and some B patients - BCLC Early Stage (A)

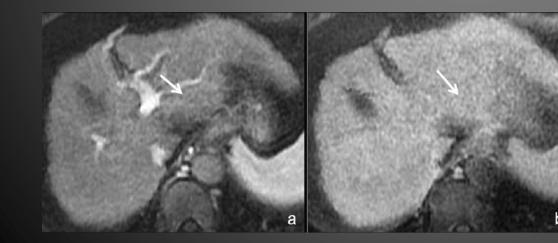
this applies to only 20% - 40% of patients with HCC

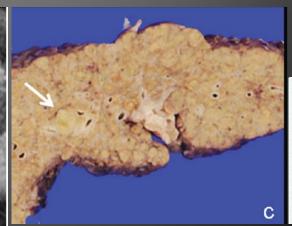
Is surgical resection possible?

- State of liver
- Stage of the disease
 - No extrahepatic metastases
 - Resectable disease
 - No major vessel invasion
- Remnant liver volume
- Better alternatives to resection?
 - MDT

How can we improve outcomes after resection of HCC?

- Improve surgical technique
 - Segmental resection
 - Combined resection and ablation
- Increase proportion of resectable cases (conversion)
 - PVE
 - TACE /TARE
- Improve diagnostic accuracy
 - Imaging


Despite best imaging with MRI


Detectability of Hepatocellular Carcinoma by Gadoxetate Disodium-Enhanced Hepatic MRI: Tumor-by-Tumor Analysis in Explant Livers

Yuko Nakamura, MD,^{1*} Hirotaka Tashiro, MD,² Junko Nambu, MD,² Hideki Ohdan, MD,² Hideki Kakizawa, MD,¹ Shuji Date, MD,¹ and Kazuo Awai, MD¹

JOURNAL OF MAGNETIC RESONANCE IMAGING 37:684-691 (2013)

- Only 69% of HCCs were diagnosed on MRI
- Mean diameter of detected lesions 11.5mm
- Mean diameter of undiagnosed lesions 6.0mm

Role of Portal Vein Embolization in Hepatocellular Carcinoma Management and Its Effect on Recurrence: A Case-control Study

Rohan C. Siriwardana · Chung Mau Lo · See Ching Chan · Sheung Tat Fan

World J Surg (2012) 36:1640-1646

	Pre-PVE FRLV	Post-PVE FRLV
Non-resected	25%	29%
Resected	23%	34%

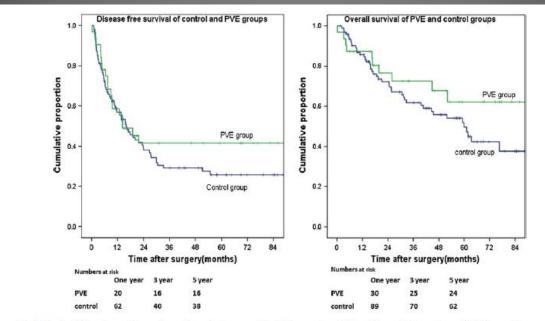
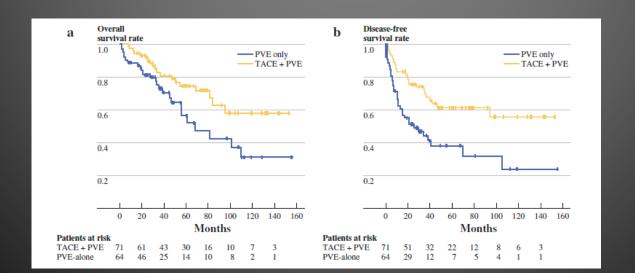


Fig. 2 Kaplan-Meier disease-free and overall survival curves of the PVE group (n = 34) and the control group (n = 102). Disease-free survival, PVE versus control: p = 0.335; overall survival, PVE versus control: p = 0.221 (log-rank test)

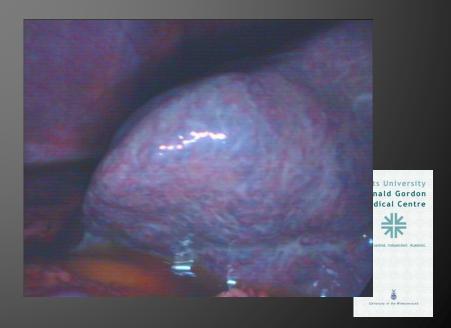

Sequential Transcatheter Arterial Chemoembolization and Portal Vein Embolization versus Portal Vein Embolization Only before Major Hepatectomy for Patients with Hepatocellular Carcinoma

Hyunkyung Yoo, MD¹, Jin Hyoung Kim, MD¹, Gi-Young Ko, MD¹, Kyoung Won Kim, MD¹, Dong Il Gwon, MD¹, Sung-Gyu Lee, MD², and Shin Hwang, MD²

Ann Surg Oncol (2011) 18:1251–1257

Results:

- Before PVE, the mean percentage of FLR volume to TELV in the TACE + PVE and the PVE-only groups was $34.1 \pm 7.2\%$ and $34.5 \pm 7.6\%$, respectively.
- After PVE, the mean percentage of FLR volume in the TACE + PVE and PVE-only groups was $41.4 \pm 7.3\%$ and $40.3 \pm 8.1\%$, respectively.
- The mean increase in percentage of FLR volume was statistically significantly (P = 0.035) higher in the TACE + PVE group (7.3 \pm 3.6%) than in the PVE-only group (5.8 \pm 4.5%).



Can we improve outcome after surgical resection of HCC?

- Adjuvant chemotherapy
 - No benefit
- Adjuvant interferon or immunotherapy
 - Some data but not conclusive
- Adjuvant Sorafenib?

Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial

Jordi Bruix*, Tadatoshi Takayama, Vincenzo Mazzaferro, Gar-Yang Chau, Jiamei Yang, Masatoshi Kudo, Jianqiang Cai, Ronnie T Poon, Kwang-Hyub Han, Won Young Tak, Han Chu Lee, Tianqiang Song, Sasan Roayaie, Luigi Bolondi, Kwan Sik Lee, Masatoshi Makuuchi, Fabricio Souza, Marie-Aude Le Berre, Gerold Meinhardt, Josep M Llovet*, on behalf of the STORM investigators

www.thelancet.com/oncology Vol 16 October 2015

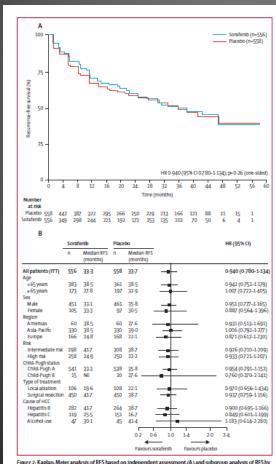
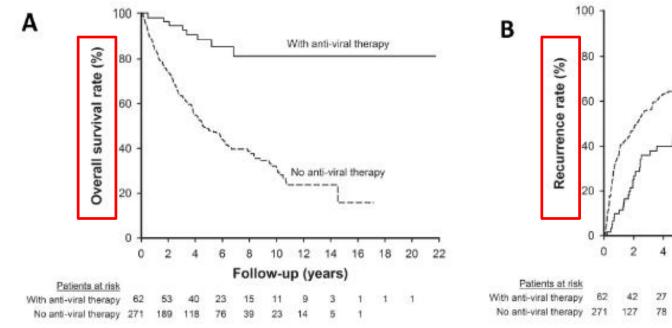
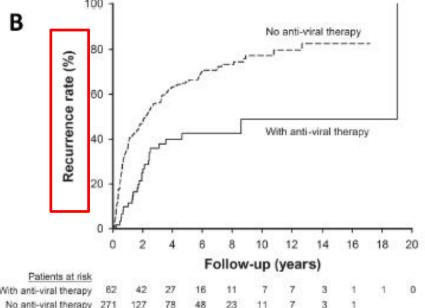


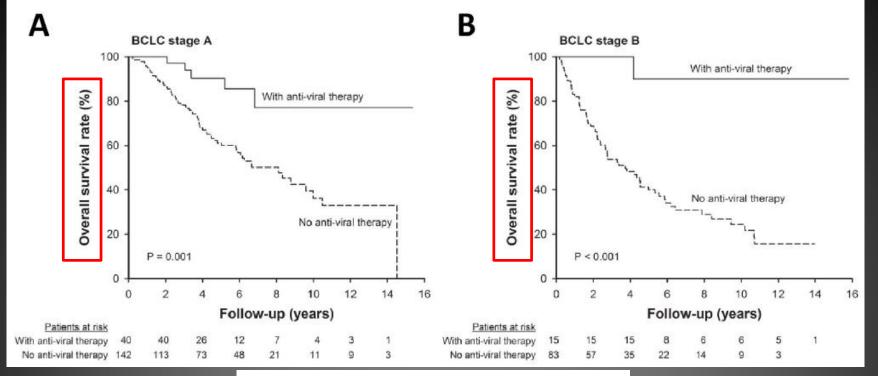
Figure 2: Kaplan-Meter analysis of BFS based on independent assessment (A) and subgroup analysis of BFS by Car regression based on independent assessment (B) BFS-recurrence free survival II-barard ratio. ITI-intention to treat. NE-not evaluable.

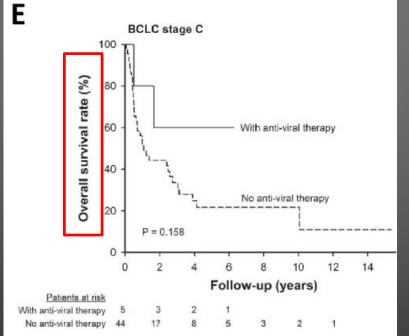
 Placebo (n=558) HR 0-891 (95% CI 0-735-1-081); p=0-12 (one-sided Time (months) at risk Placebo 558 438 387 322 295 266 250 229 213 166 121 Sorafenib 556 345 298 243 220 191 172 152 135 102 70 Floure 3: Kaplan-Meier analysis of time to recurrence based on independent assess HR-hazard ratio. Sorafenib (n=556) Placebo (n=558) HR 0-995 (95% CI 0-761-1-300); p=0-48 (one-sided) at risk Placebo 558 540 520 504 477 450 433 420 403 381 298 212 134 78 29 Sorafenib 556 503 482 460 445 419 395 383 367 340 251 176 110 62 21 Figure 4: Kaplan-Meier analysis of overall survival HR-hazard ratio.

Can we improve outcome after surgical resection of HCC?


- Adjuvant chemotherapy
 - No benefit
- Adjuvant interferon or immunotherapy
 - Some data but not conclusive
- Adjuvant Sorafenib?
 - No benefit
- Antiviral therapy in Hep B and Hep C




The Influence of Hepatitis B Viral Load and Pre-S Deletion Mutations on Post-Operative Recurrence of Hepatocellular Carcinoma and the Tertiary Preventive Effects by Anti-Viral Therapy


Chien-Wei Su^{1,2,3}, Yu-Wei Chiou⁴, Yi-Hsuan Tsai³, Ruei-Dun Teng³, Gar-Yang Chau^{2,5}, Hao-Jan Lei^{2,5}, Hung-Hsu Hung^{2,3,6}, Teh-la Huo^{1,7}, Jaw-Ching Wu^{3,4}*

PLOS ONE June 2013 | Volume 8 | Issue 6 | e66457

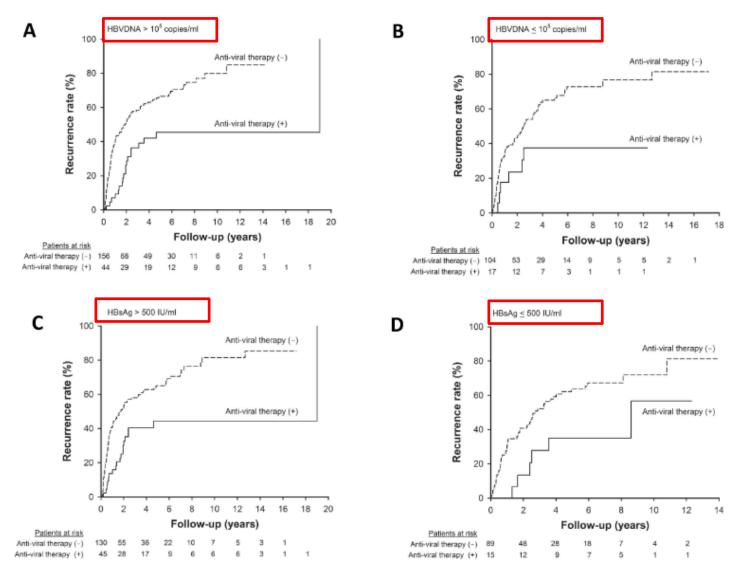
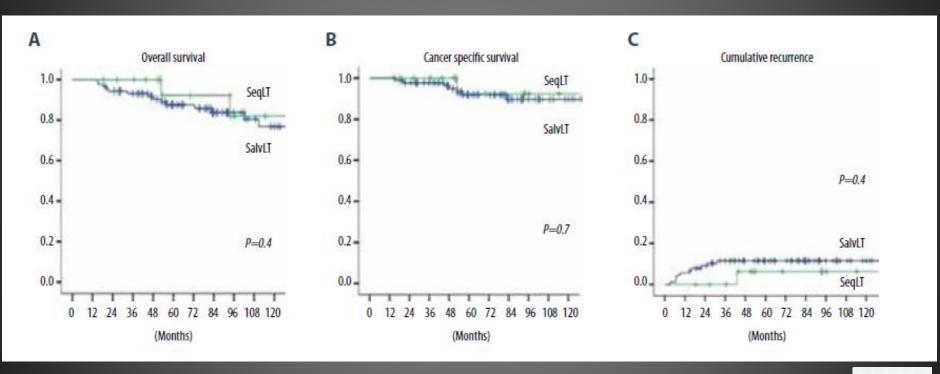


Figure 3. The impact of anti-viral therapy on post-operative recurrence stratified by viral factors. Patients who received anti-viral therapy after resection had significantly lower recurrence rate both in the setting of serum HBV DNA levels $>10^5$ copies/mL (\mathbf{A} , p<0.001) and $\leq 10^5$ copies/mL (\mathbf{B} , p=0.038). (\mathbf{C}) Among patients with serum HBsAg >500 IU/mL, anti-viral therapy was associated with lower recurrence rate (p=0.001). (\mathbf{D}) In patients with serum HBsAg ≤ 500 IU/mL, the recurrence rates were also lower in patients receiving antiviral therapy after resection surgery (p=0.037).

Wits University
Donald Gordon
Medical Centre

Conclusions: Ongoing HBV viral replication and pre-S deletion are crucial for determining post-operative tumor recurrence. Anti-viral therapy can help reduce recurrence and improve prognosis, especially for those with early stage HCC.


Can we improve outcome after surgical resection of HCC?

- Adjuvant chemotherapy
 - No benefit
- Adjuvant interferon or immunotherapy
 - Some data but not conclusive
- Adjuvant Sorafenib?
 - No benefit
- Antiviral therapy in Hep B and Hep C
 - Good data in favour, recommended
- Salvage Transplantation
 - Best option

Liver Transplantation for High Risk Hepatocellular Carcinoma After Liver Resection: A Sequential or Salvage Approach?

Lin et al Annals Transplantation 2017

HEPATOLOGY

HEPATOLOGY, VOL. 00, NO. 00, 2017

Curative Salvage Liver Transplantation in Patients With Cirrhosis and Hepatocellular Carcinoma: An Intention-to-Treat Analysis

Robbert J. de Haas, ^{1,2} Chetana Lim ^{1,5} Prashant Bhangui, ⁴ Chady Salloum, ³ Philippe Compagnon, ^{3,5} Cyrille Feray, ^{5,6} Julien Calderaro, ⁷ Alain Luciani, ^{1,5} and Daniel Azouky^{3,5}

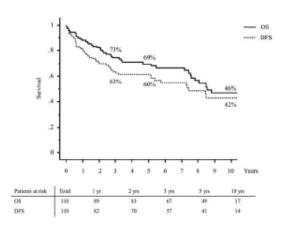


FIG. 2. OS and DFS after liver resection in the total study population (ITT analysis).

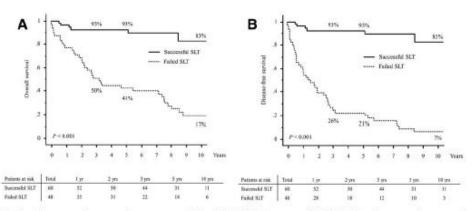


FIG. 3. (A) OS after liver resection according to successful or failed SLT strategy. (B) DFS after liver resection according to successful or failed SLT strategy.

Conclusions

- Surgical resection plays an important role in the management of HCC with curative intent
- It is possible to increase resection rates and outcomes with patient selection, improved staging and conversion therapy
- Transplantation offers better outcomes than surgical resection for HCC as it treats both the HCC as well as the diseased liver
- Only limited numbers of these patients can be considered for surgery or transplantation
- Treatment of the HBV and HCV infection beneficial

