Train the Trainers 2003 - Education and

Training Committee

EBM AND CRITICAL APPRAISAL

- EVIDENCE BASED MEDICINE
- CRITICAL APPRAISAL

Train the Trainers 2003 - Education and Training Committee

EBM

- The Practice of Medicine is an Art Backed by Science
- As Trainers We Must Pass on the Art as has Occurred over the Centuries
- The Science: Basic Principles Evidence Based Medicine

Train the Trainers 2003 - Education and Training Committee

EBM

• EBM Is Not Intended To Replace Clinical

Judgement But Rather To Enhance It

- As Trainers We Must:
 - Teach our trainees the principles of EBM
 - Teach them how to critically appraise the evidence Validity Applicability

Train the Trainers 2003 – Education and Training Committee

THE HIERARCHY OF EVIDENCE

Ia Systematic review of randomised clinical trials

Ib Single randomised clinical trials

II Cohort study

III Case-control study

IV Physiological studies, narrative overviews, consensus reports, opinion of 'experts'

Train the Trainers 2003 – Education and

DANGERS IN NON-RANDOMISED STUDIES

Biological Mechanisms

- Limited time of diseases
- Cyclical progression of diseases
- When do we see patients?
- Psychological Mechanism
 - The Rosenthal effect, we see what we want to see (BIAS)!
 - The Barnum effect, we believe what we want to believe (astrology)!
- Confounding by indication

Train the Trainers 2003 – Education and Training Committee

IMPORTANT ASPECTS OF RANDOMISED CLINICAL TRIALS

- Random errors
- Systematic errors (bias)

Train the Trainers 2003 – Education and Training Committe

RANDOM ERRORS IN SMALL TRIALS

- False positive results (type I error)
- False negative results (type II error)

Train the Trainers 2003 – Education and Training Committe

SYSTEMATIC ERRORS (BIAS) IN RANDOMISED TRAILS

Methodological quality

Confidence that the design, conduct, and report of a trial restrict bias in the intervention comparison

Train the Trainers 2003 - Education and Training Committe

HOW TO ASSESS METHODOLOGICAL QUALITY

- Generation of the allocation sequence
- Allocation concealment
- Double blinding
- Sample size
- Intention-to-treat analysis

Train the Trainers 2003 – Education and Training Committee

CONCLUSIONS

Methodological quality of 'small' RCTs affects the estimated intervention effect

- On average, high quality RCTs provide reliable estimates
- On average, low quality RCTs exaggerate the intervention effect with 50%

Train the Trainers 2003 - Education and Training Committe

CONCLUSIONS

- The majority of trials in Gastroenterology have inadequate methodological quality regarding
 - Generation of the allocation sequence
 - Allocation concealment
 - Double blinding
- The methodological quality varies significantly within different disease areas

Train the Trainers 2003 – Education and Training Committee

CRITICAL APPRAISAL

The 4 components of study appraisal

- 1) Is the study valid (i.e. good design / little bias)?
- **2)** What's the magnitude of the effect?
- **3)** Is the effect precise?
- 4) Are the findings applicable?

GATE: a Generic Appraisal Tool for Epidemiology

1) Is the study valid? (i.e. is it well designed?)

Study design

Who? Study population selected

PECOT diagram: design components

1) Is the study valid? (i.e is it well designed?)

Absence of bias

(random or systematic error)

Systematic and random error

PECOT diagram:bias

Selection

Confounding

Confounding

Minimising confounding

confounding

Measurement bias loss f-p/compliance/contamination

2) What is the magnitude of the effects measured in the study?

The numbers

GATE approach: numbers

• Unexposed

treatment	Total	Develop an Ulcer	Did not
NSAID	10	4	6
Placebo	10	2	8
	Calculations made form these results		
Event Rate (ER)	4/10 = .4		
Control event rate (CER)	2/10 = .2		
Event Odds	4/6 = .66		
Control Odds	2/8 = .25		
Odds ratio	.66/.25 = 2.6		
Relative Risks (ER/CER)	.4/.2 = 2		
Absolute Risks (ER/CER)	.42 = .2		
NNT (1/)ER/CER)	1/.2 = 5		

3) Is the EFFECT Precise

Train the Trainers 2003 - Education and Training Committee

THE NUMBERS TABLE occurrence, effects & precision

Outcomes & time	Comparison occurrence (CO)	Exposure occurrence (EO)	Rel. Risk (EO/CO) ±95% CI	Risk Diff (CE-EO) ±95% CI	NRT (1/RD) ±95% CI

4) Are the findings Applicable

Relevant, feasible, affordable, generalisable

Train the Trainers 2003 - Education and Training Committee

Critically Appraised Topics

The 5 Steps of Practising EBHC

- **1.** Translate info needs into answerable questions
- 2. Track down best evidence to answer them
- 3. Appraise evidence for validity, impact and applicability
- 4. Integrate evidence with practice expertise and apply in practice
- **5.** Evaluate performance

Steps 1-3 =CAT

The 5 Steps of Generating A CAT

- **1.** Scenario
- **2.** 5-part question
- 3. Search strategy & article found
- 4. Critical appraisal summary with evidence table
- **5.** Comments

Clinical Questions

- 1. Participants (patient group / problem)
- 2. Exposure (intervention if about therapy)
- 3. Comparison (if relevant)
- 4. Outcome
- 5. Time

Critical Appraisal Exercise

Pederzoli et al

Ward Round

. 80 yr man with acute severe biliary pancreatitis

. Glasgow criteria – score of 4

. What is the role of Antibiotic therapy to minimise necrosis

The 5 Steps of Generating A CAT

- **1.** Scenario
- **2.** 5-part question
- 3. Search strategy & article found
- 4. Critical appraisal summary with evidence table
- **5.** Comments

5 Part Question

- 1) In patients with severe pancreatitis
- 2) does the use of antibiotics
- 3) compared to no antibiotics
- 4) reduce the rate of abdominal sepsis
- 5) over the course of the acute illness(3 m)

GATE approach: Pederzoli et al

GATE approach

GATE approach:

Study Population

denominator

Magnituce Effect

Relative risk

= Event Rate imep ÷ Control placebo

Magnitude Effect/Benefit/Harm

Relative risk

 $= 0.122 \div 0.303 = 0.403$

Estimating risk

Risk difference

= 0.303 - 0.122 = 0.181

Estimating risk/benefit

NNT = 1 ÷ risk difference = 1 ÷ 0.181 = 5.5

COMMENTS

- Randomisation not good (more patients with greater necrosis entered into the exposure arm)
- No Blinding by the assessors
- Difference in production of pancreatic sepsis did not translate to differences in mortality nor the requirement for operative intervention

Bottom Line

- Antibiotic therapy reduces the risk of pancreatic sepsis in patients with acute SNP diagnosed on CT, but no effect on Mortality, need for Surgery
- Imipenem is an appropriate antibiotic for use in acute SNP

Scandinavian Journal of Gastroenterology

ISSN: 0036-5521 (Print) 1502-7708 (Online) Journal homepage: <u>https://www.tandfonline.com/loi/igas20</u>

Systematic review and meta-analysis of antibiotic prophylaxis in severe acute pancreatitis

Mathias Wittau, Benjamin Mayer, Jan Scheele, Doris Henne-Bruns, E. Patchen Dellinger & Rainer Isenmann

In summary, to date there is no statistically significant evidence that supports the routine use of antibiotic prophylaxis in SAP. However, in case of newly

SUNDAY 4 groups - leader

- Surgical
- Liver
- Reflux
- Varsity Biologics
- Appraisal Tool Checklist 1/2

Summary: 4 components of study appraisal

- 1) Is the study valid (i.e. good design / little bias)?
- **2)** What's the magnitude of the effect?
- **3)** Is the effect precise?
- 4) Are the findings applicable?

THANK YOU