

Management of synchronous colorectal cancer liver metastases

Eduard Jonas

Surgical Gastroenterology / Hepatopancreatobiliary Unit University of Cape Town and Groote Schuur Hospital Cape Town

17 January 2020

eduard.jonas@uct.ac.za

- Definition and terminology
- Prevalence of synchronous CRCLM
- Detection and work-up
- Treatment

Incidence of colorectal cancer liver metastases (CRCLM)

Incidence of synchronous colorectal cancer liver metastases (CRCLM)

Incidence of colorectal cancer liver metastases (CRCLM)

- Frequently reported as 40-50% of patients with colorectal cancer (CRC)
- True incidence population-based studies
 - Manfredi et al. 27.3% (5-year follow-up)
 - Hackl et al. 24.7% (5-year follow-up)
 - Engstrand J et al. 26.5% (5-year follow-up)

Manfredi S, et al. Ann Surg. 2006;244:254–259 Hackl C, et al. BMC Cancer. 2014;14:810 Engstrand J, Jonas E, et al. BMC Cancer. 2018;18:78

Metastatic patterns

Engstrand J, Jonas E, et al. BMC Cancer. 2018;18:78 Engstrand J, Jonas E, et al. Oncologist. 2017;22:1067-1074

Definition – synchronous vs. metachronous

Definition

There is no consensus on the definition of synchronous vs. metachronous metastases

- At diagnosis of the primary tumour
- 3 months afterwards
- 6 months afterwards
- 12 months afterwards

RESEARCH

Synchronous and metachronous liver metastases in patients with colorectal cancer—towards a clinically relevant definition

Jennie Engstrand^{1*}⁽⁶⁾, Cecilia Strömberg², Henrik Nilsson¹, Jacob Freedman¹ and Eduard Jonas^{2,3}

Table 4 Summary of time points for defining synchronous vs. metachronous and prognostic significance as measured by OS and DFS in publications in 2005–2018

Defining time point	Studies (<i>n</i>)	Prognostic value				
		OS significant	OS non-significant	DFS significant	DFS non-significant	
Primary tumour diagnosis/surgery	18	9	9	4	8	
Three months post-primary tumour diagnosis/surgery	4	2	2	0	1	
Six months post-primary tumour diagnosis/surgery	12	4	8	0	5	
Twelve months post-primary tumour diagnosis/surgery	7	0	7	0	1	
Total	41	15	26	4	15	

OS overall survival, DFS disease-free survival

Engstrand J, Jonas E. et al. World J Surg Oncol. 2019 Dec 26;17(1):228. doi: 10.1186/s12957-019-1771-9

Terminology

- CRCLMs are always synchronous
- Detection is synchronous or metachronous

CRCLMs are always synchronous

- After CRC removal no new LMs can form
- Are detectable at CRC presentation

Liver Transplantation for Nonresectable Liver Metastases From Colorectal Cancer

Morten Hagness, MD,*† Aksel Foss, MD, PhD,*† Pål-Dag Line, MD, PhD,* Tim Scholz, MD, PhD,* Pål Foyn Jørgensen, MD, PhD,* Bjarte Fosby, MD,*† Kirsten Muri Boberg, MD, PhD,‡ Øystein Mathisen, MD, PhD,§ Ivar P. Gladhaug, MD, PhD,†§ Tor Skatvedt Egge, MD,¶ Steinar Solberg, MD, PhD,∥ John Hausken, MD,** and Svein Dueland, MD, PhD††

Hagness M, et al. Ann Surg 2013;257:800-806

Detection is synchronous or metachronous

Definition

Metastases diagnosed at the time of diagnosis of the primary tumour and in patients operated for CRC at the time of operation

- Semantically correct the primary tumour and metastases have to be present at the same time
- Diagnosing metastatic disease at the time of diagnosis of the primary tumour has got important therapeutic implications

Prevalence

Engstrand J, Jonas E, et al. BMC Cancer. 2018;18:78

CRCLMs are synchronous in all patients! The detection varies!

- It <u>is not</u> about:
 - development
 - presentation

- It <u>is</u> about
 - detection

Detection and work-up for CRCLM

- Ultrasound (US))
 - Sonovue
 - Sonazoid
- CE multidetector CT (CE-MDCT) 4-phase
 - Iodine-based contrast
- Magnetic resonance imaging (MRI)
 - Extracellular contrast
 - Hepato-cellular contrast

MRI is still widely regarded as a problem-solving modality in unclear cases, rather than a first-line imaging modality

	Pre-contrast	Arterial phase	Portovenous phase	Delayed phase	Hepatobiliary phase
CE-MDCT					Х
ECCM-MRI					Х
Gd-EOB-DTPA-MRI					

Randomized multicentre trial of gadoxetic acid-enhanced MRI versus conventional MRI or CT in the staging of colorectal cancer liver metastases

C. J. Zech^{1,3}, P. Korpraphong⁴, A. Huppertz², T. Denecke², M.-J. Kim⁶, W. Tanomkiat⁵, E. Jonas⁷ and A. Ba-Ssalamah⁸ on behalf of the VALUE study group

C. J. Zech
L. Grazioli
E. Jonas
M. Ekman
R. Niebecker
S. Gschwend
J. Breuer
L. Jönsson
S. Kienbaum

Health-economic evaluation of three imaging strategies in patients with suspected colorectal liver metastases: Gd-EOB-DTPA-enhanced MRI vs. extracellular contrast media-enhanced MRI and 3-phase MDCT in Germany, Italy and Sweden Cost evaluation of gadoxetic acid-enhanced magnetic resonance imaging in the diagnosis of colorectal-cancer metastasis in the liver: Results from the VALUE Trial

Christoph J. Zech $^1\cdot$ Nahila Justo $^2\cdot$ Andrea Lang $^2\cdot$ Ahmed Ba-Ssalamah $^3\cdot$ Myeong-Jin $Kim^4\cdot$ Harald Rinde $^5\cdot$ Eduard Jonas 6

MRI with Primovist

- More sensitive detect more
- Surgery more often performed
- If used as primary modality no further imaging required
- Less often change pre-operative plan
- Generally a more economic strategy

Zech C, Jonas E, et al. Eur Radiol. 2009;19:S753–S763 Zech C, Jonas E, et al. Br J Surg. 2014;101:613-21 Zech C, Jonas E, et al. Eur Radiol. 2016;26:4121-4130

Treatment

All the permutations of modern CRCLM treatment apply but influenced by timing of the liver intervention

- Before CRC operation
- Simultaneous to CRC operation
- After CRC operation

Curative intervention for CRCLM - the 1900's paradigm

Decisions based on what is taken away

Curative intervention for CRCLM - the 2000's paradigm

Decisions based on *what is left behind*

- Absolute contra-indications
 - Inability to achieve a R₀ situation in the liver
 - Inability to leave a sufficient future liver remnant (FLR)
- Relative contra-indications
 - extrahepatic disease
 - progress on chemotherapy
 - and more.....

Curative intervention for CRCLM – the post 2010 paradigm

OMD – oligometastatic disease

- metastases at 2-3 sites, n ≤ 5 (or sometimes more)
- predominantly visceral (liver, primary, lung, peritoneum, nodes and ovary)
- lesions in bones and brain are excluded

Van Cutsem E, et al. Annals of Oncology 2016;27:1386-1422

Liver first operation for synchronous CRCLM

- Indications:
 - extensive liver disease /borderline resectability
 - rectal cancer
- Advantages:
 - avoids risk of progression beyond resectability
 - rectal cancer liver resection in post-radiation pause
- Results:
 - similar survival to colon first strategy

Valdimarsson VT, et al. HPB. 2018;20:441-447

ORIGINAL ARTICLE

Simultaneous vs. delayed operation for synchronous CRCLM

Indication – easy colon and easy liver

- Results:
 - shorter hospital stay for simultaneous
 - similar perioperative morbidity
 - similar long-term survival

Simultaneous vs. delayed operation for synchronous CRCLM

Indication – high-risk colon and high-risk liver

- Results:
 - shorter hospital stay for simultaneous
 - similar perioperative morbidity
 - similar long-term survival

Resectable vs. unresectable

Group 1

Readily resectable with a single intervention (15-25%)

Group 2 Unresectable but potentially resectable with multimodality conversion (15-20%) Group 3

Unresectable and unlikely to become

resectable (60-70%)

Conversion strategies

Tumour-targeting

- Conversion chemotherapy
- Staged surgery
- Local ablation techniques

FLR-targeting

- Portal vein embolization
- Portal vein ligation

Combination

- In situ liver split (ALPPS)
- Liver transplant

Chemotherapy

Two-stage liver resection

A multiple microwave ablation strategy in patients with initially unresectable colorectal cancer liver metastases – A safety and feasibility study of a new concept

J. Engstrand ^a, H. Nilsson ^a, A. Jansson ^b, B. Isaksson ^b, J. Freedman ^a, L. Lundell ^b, E. Jonas ^{a,*}

 ^a Karolinska Institutet, Department of Clinical Sciences, Danderyd Hospital, Division of Surgery, Stockholm, Sweden
^b Division of Surgery, Department of Clinical Sciences, Intervention and Technology (CLINTEC), Karolinska Institutet at Karolinska University Hospital, Huddinge, Sweden

000 00 00 000 A A O O O

Treatment-related parameters in the MWA group.

	Median (min-max)
Number of ablations	7 (4-22)
Operation time (min)	235 (112-475)
Length of hospital stay (days)	10 (2-24)
Relation of ablation to colorectal surgery	n
Before	3
Simultaneously	12
After	5
Navigation	n
Ultrasound	13
Computer-assisted	7

Engstrand J, Jonas E, et al. Eur J Surg Oncol. 2014 May 20. [Epub ahead of print]

PVE versus PVL

Clinical studies with intraoperative portal vein ligation to hypertrophy the remnant volume, either alone or compared with percutaneous portal vein embolisation.

	Type of study (n)	Indications (n)	POT	One-stage vs TSH	Volume increase after PVL and/or PVE	<i>p</i> <	
Denys, 1999 ²⁶	Denys, 1999 ²⁶ Clinical case LMCRC		PVL: firstly One-stage: yes PVE: after failure TSH: no of PVL		PVL: failure PVE: After failure 256%		
Broering, 2002 ¹²	Prospective (34 cases)	LMCRC (17) HCC (2), CC (13),	PVL: 17 PVE: 17 (10 percutaneous and	One-stage: all cases TSH: no	PVL: from 287 ml to 411 ml (123 ml) PVE: from 271 to 459 ml	0.012	
Selzner, 2006 ³⁴	Retrospective (11 cases)	Others (2) All LMCRC	7 transileocolic) PVL: 11 (10 right portal vein and 1 left portal vein) PVE: no	One-stage: all cases TSH: no	(188 ml) PVL: from 42 to 52% (10%) PVE: no	0.001	
Aussilhou, 2008 ¹³	Retrospective (35 cases)	NETLM (10) LMCRC (25)	PVL: 17 PVE: 18	One-stage: 18 cases of PVE TSH: 17 cases of PVL	PVL: from 477 to 638 ml (38%) PVE: from 509 ml to 641 (35%)	n.s.	
Capussotti, 2008 ¹⁵	Retrospective (2 hospitals) (48 cases)	All LMCRC	PVL: 17 PVE: 31	One-stage: 37 cases TSH: 11 cases	PVL: from 17.7 to 26.9% PVE: from 17.5% to 24.7%	n.s.	
Are, 2008 ²⁷	Laparoscopy (9 cases)	LMCRC (5) ChC (3) HCC (1)	PVL: 9 PVE: no	One-stage: 2 cases TSH: 7 cases	PVL: from 209 ml to 495 ml (2 needed subsequent PVE) PVE: no	-	
Homayounfar, 2009 ¹⁶	Retrospective (24 cases)	All LMCRC	PVL: 24 (23 right portal vein and 1 left portal vein) PVE: no	One-stage: no cases TSH: 24 cases	PVL: from 350.5 ml to 475 ml (35.7%) PVE: no	_	
Szijarto, 2009 ¹⁷	Retrospective (14 cases)	All LMCRC	PVL: 14 PVE: no	One-stage: no cases TSH: 14 cases	PVL: Increase in 28.9% PVE: no	-	
Karoui, 2010 ²⁸	Retrospective (2 hospitals) (33 cases)	LMCRC (11 cases without portal occlusion)	PVL: 17 PVE: 5	One-stage: no cases TSH: 33 cases (in first operation only resected CRC)	PVL: 22% (9–30%). Increase in all cases PVE: 22% (9–30%). Increase in all	-	
Sturensson, 2010 ³¹	Retrospective (26 cases)	All LMCRC	PVL: 4 PVE: 22	One-stage: 26 cases TSH: excluded of the study	PVL: 4 after PVL hypertrophy PVE: 12 cases after PVE needed other PVE	-	

POT: portal occlusion technique; PVL: portal vein ligation; PVE: portal vein embolisation; LMCRC: liver metastases of colorectal cancer; NETLM: neuroendocrine tumour liver metastases, TSH: two-stage liver resection; CHT: chemotherapy; HCC: hepatocarcinoma; CC: cholangiocarcinoma; IAC: intra-arterial chemotherapy.

PVL

PVL

Robles R, et al. Eur J Surg Oncol. 2012;38:586-93 Van Lienden KP, et al. Cardiovasc Intervent Radiol. 2013 Mar 13.]

In situ split (ALPPS)

- Operation 1:
 - division of liver parenchyma
 - FLR preservation of vascularity and biliary drainage
 - Resectate portal vein ligation, preservation of arterial supply and biliary/venous drainage
- Operation 2:
 - Resection

Liver Transplantation for Nonresectable Liver Metastases From Colorectal Cancer

Morten Hagness, MD,*† Aksel Foss, MD, PhD,*† Pål-Dag Line, MD, PhD,* Tim Scholz, MD, PhD,* Pål Foyn Jørgensen, MD, PhD,* Bjarte Fosby, MD,*† Kirsten Muri Boberg, MD, PhD,‡ Øystein Mathisen, MD, PhD,§ Ivar P. Gladhaug, MD, PhD,†§ Tor Skatvedt Egge, MD,¶ Steinar Solberg, MD, PhD,∥ John Hausken, MD,** and Svein Dueland, MD, PhD††

Hagness M, et al. Ann Surg 2013;257:800-806

MDT assessment

In a patient with synchronously detected bi-lobar CRCLM there are more than 2 000 000 treatment options

Thank you

